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Abstract—Social media has become a very popular way for
people to share their photos with friends. Because most of the
social images are attached with GPS (geo-tags), a photo’s GPS
information can be estimated with the help of the large geo-tagged
image set while using a visual searching based approach. This
paper proposes an unsupervised image GPS location estimation
approach with hierarchical global feature clustering and local
feature refinement. It consists of two parts: an offline system and
an online system. In the offline system, a hierarchical structure
is constructed for a large-scale offline social image set with GPS
information. Representative images are selected for each GPS
location refined cluster, and an inverted file structure is proposed.
In the online system, when given an input image, its GPS infor-
mation can be estimated by hierarchical global clusters selection
and local feature refinement in the online system. Both the compu-
tational cost and GPS estimation performance demonstrates the
effectiveness of the proposed hierarchical structure and inverted
file structure in our approach.

Index Terms—BoW, GPS Estimation, Hierarchical Structure,
Inverted File Structure, k-NN, Social Media, User.

I. INTRODUCTION

W ITH the development of communication technology,
more and more digital devices, such as cameras and

smart-phones, offer global positioning system (GPS) integra-
tion. Large quantities of images taken by users are shared
on social media websites such as Facebook and Flickr every
day. To make it more convenient to administrate resources of
images, some additional information such as the times and GPS
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locations where they were taken should be provided, which
leads to the problem of automatic GPS estimation in the web
images.
Currently, the GPS information of social images has been

widely used in many applications such as content browsing [1],
[27], image annotation [6], [7], [37], image search [8]–[10], and
localization [45]. Qian et al. have shown that using the GPS in-
formation of users’ uploaded photos is helpful for improving
users’ vocabulary tagging performances [37]. Due to the ad-
vantages of GPS attached to images in both industrial and aca-
demic areas [10], Google and Flickr suggest that users geo-tag
their shared images by dragging them onto the map. However,
this kind of GPS assignment approach leads to large errors in
GPS location. There are some situations in which find beautiful
photos without any idea about the locations where they were
taken. With the help of large-scale geo-tagged photos shared in
social media, automatic image GPS location estimation can be
achieved.
IM2GPS made the first attempt to estimate the GPS location

for a given image by utilizing visual matching in a large geo-ref-
erenced image dataset [2]. Kalogerakis et al. further proposed
methods of incorporating single imagematching with sequential
data to improve the estimation accuracy [28]. Zheng developed
a worldwide landmark recognition system [29], which utilized
a predefined landmark list to query online image search engines
and select candidate images. Then they re-clustered and pruned
the results to estimate the GPS information of the landmark [30],
[31]. Moreover, the Placing Task makes use of attached infor-
mation, such as tags and user descriptions to estimate the GPS
of an image or video frame [32]–[34], [39]–[43].
Although a great deal of research effort has been devoted

to image GPS location estimation, the task is still very chal-
lenging, especially when we only have the image without any
supplementary information. What we can resort to is utilizing
its visual information to perform GPS estimation for an input
image. Both image GPS estimation performance and computa-
tional cost should be considered and meet the requirements of
real-time applications. To get satisfactory image GPS estima-
tion performance, local feature matching is required. However,
the local feature matching between the input image and all the
geo-tagged images in the database is extremely computational
intensive. It is likely that images taken at different locations
have similar appearance, but they have different local features.
For example, images of churches taken at different places have
similar color or texture patterns. Thus, to estimate the GPS of an
image that contains a church, we first find groups of images con-
taining churches, and then determine which photos have iden-
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tical churches with the input image, and finally use the GPS in-
formation of the identical church images to estimate the location
of the input image.
In this paper, we propose a hierarchical algorithm for esti-

mating the GPS location of an image by using a purely unsuper-
vised data-driven approach. First, we classify the input image
into several candidate clusters with similar color or texture pat-
terns. Then the input image is further attributed to a set of GPS
location refined clusters. Finally, we use local feature matching
to determine its accurate GPS location. The main contributions
of this paper are as follows: 1) Building a hierarchical structure
for a geo-tagged dataset by using both visual features and GPS
information. 2) Proposing a hierarchical global feature classi-
fication and local feature refinement based GPS estimation ap-
proach. 3) Adopting the inverted file structure and selection of
representative images for each GPS location to guarantee esti-
mation speed and accuracy.
When compared with a preliminary version[35], we have

made the following enhancements: 1) We have conducted
a more comprehensive survey of related work; 2) we have
proposed an inverted file structure for representative images to
reduce computational cost; and 3) provided more experimental
results and evaluation, including extending a large geo-tagged
image set and utilizing cross validations. The rest of the paper
is organized as follows: related work on image GPS estimation
is reviewed in Section II. Section III introduces the system
overview of the proposed image GPS estimation approach.
Section IV examines the offline system for the geo-tagged
image set. Section V looks at the online system for estimating
the GPS location of an input image. Experiments and dis-
cussions are shown in Section VI. Conclusions are drawn in
Section VII.

II. RELATED WORK

IM2GPS, proposed by Hays and Efros, was a direct feature
matching based approach for the GPS estimation of an input
image [2]. In IM2GPS, the distances of an input image to all
the geo-tagged images are measured in a low-level visual fea-
ture space. By ranking the distances in ascending order, the
K-nearest neighbors (KNN) are selected to improve image GPS
estimation accuracy. Then, mean-shift clustering complements
the GPS locations of the images of the selected K-nearest neigh-
bors. Finally, the cluster with the highest cardinality is selected
and its GPS location is assigned to the input image [2].
Li et al. utilized multi-class SVM classifiers using bag-of-

word features for large-scale image location estimation [26].
They also showed that by adding textural features such as tags,
the performance can be improved. For an image without textual
information, they had to use the sole visual feature for image
GPS estimation. The computational costs are extremely high for
the training of both model parameters. Also, when the dataset is
extended, the models need to be trained again. Quack also pro-
posed an approach for estimating the location of an image by
utilizing the method of local feature matching [11]. The feature
matching based GPS estimation approach is also very compu-
tational intensive when the scale of the dataset is very large. To
speed up the estimation process, user interaction is required to
confine the locations of the input images to a rough geographic

area [11]. If the rough geographic area that the user assigned has
a large error, then both the image GPS estimation performances
and the computational cost results will be affected.
Actually, existing image classification and image retrieval

approaches can be adopted to fulfill image GPS estimation [19],
[20]. The main process can be as follows: first, find images
similar to the input image, and then assign the GPS location
of the visually similar images to the GPS location of the input
image. From this point of view, an existing example-based
image retrieval approach can be utilized in GPS location es-
timation for an input image. Zhang et al. proposed a spatial
coding based image retrieval approach by building the contex-
tual visual vocabulary [20]. By using inverted construction, the
computational cost is low but produces a good performance.
Techniques that generate 3-D models from large-scale geo-
tagged photos are related to GPS location estimation [23]–[25].
Image retrieval is carried out by generating 3-D models and
translating the query image into a 3-D pattern[23], [24]. Park
el al. proposed a method of viewing direction determination by
utilizing Google Street View and Google Earth satellite [25].
Placing Task (http://www.multimediaeval.org/) is a bench-

mark initiative devoted to the problem of placing multimedia
that was first organized in 2009. Placing task invites participants
to propose approaches to solve the problem of automatic anno-
tation of video lacking geographical data [32]–[34]. In Placing
Task 2012, Trevisiol et al. provided a method to identify the ge-
ographic location of videos by utilizing the attached tags[33].
They utilize the key frame of the video as a query to accom-
plish the retrieval and utilize the GPS information of the best
match results as the GPS information of the key frame. How-
ever, their results show that when only utilizing image content
that the estimation performance is not satisfactory. Laere pro-
posed a two-step process for geo-referencing tagged resources
[39]. They first use language models to find an area that is likely
to contain the location of the resource. Then, the location is de-
termined by choosing the most similar resources in the second
step. In their method, tags are taken into consideration to mea-
sure the similarity between the input and offline images. Tzy
carried out video geo-referencing by combining textual features
and visual features [40]. Text processing, visual processing, and
data/information fusion are the three steps for predicting an un-
seen query video. The visual processing module ranks the video
in the training set by visual similarity with the test video. The
textual processing module works in a similar fashion. The fu-
sion module combines the results in both visual and textual pro-
cessing using rank aggregation. Kelm et al. proposed a frame-
work to geo-tag video using textual and visual information of
shared media [41]. As for the textual information, they detect
the language and translate the text into English using the web
service Google Translate. Probabilistic latent semantic analysis
(pLSA) and collaborative systems are utilized to process the tex-
tual information. A support vector machine (SVM) is trained to
process the visual features, color, and edge features. Li proposed
a pure image content-based approach for video geo-referencing
[42]. They partition the world map into regions based on ex-
ternal data sources such as climate and biomes data. As for the
visual content, they use the key frames of videos and represent
each frame by its visual features. A support vector machine with
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Fig. 1. Block diagram of the GPS estimation system. It consists of online and
offline systems. The offline system aims at indexing the large scale geo-tagged
image set. The online system is to estimate the GPS of input image.

RBF kernel is utilized to choose the most similar regions. Kelm
et al. also addressed the problem of video geo-referencing [43].
They make use of external resources like gazetteers to extract
homonyms in the metadata. Visual and textual features are used
to identify similar content. The videos’ locations are classified
into possible regions by utilizing a method of fusing the visual
and textual features. Flickr videos are tagged with the geo-in-
formation of the most similar training image within the regions
that were previously filtered by the probabilistic model for test
video.

III. SYSTEM OVERVIEW

Intuitively, the GPS location of an input image can be ob-
tained by comparing its visual content to large-scale, geo-tagged
image sets. However, feature matching based image GPS esti-
mation approaches are computationally intensive. To speed up
the estimation process, we propose a fast GPS estimation algo-
rithm that uses the hierarchical structure [35] and inverted file
structure for the geo-tagged images. The introduced hierarchical
structure converts ‘selection of the most similar image from the
geo-tagged image dataset’ to ‘selection of hierarchical clusters
from the dataset’. As the number of clusters is much smaller
than the number of geo-tagged images, this conversion is time
saving. The block diagram of our approach is shown in Fig. 1.
It consists of online and offline systems.
The offline system aims to index the large-scale geo-tagged

image datasets. It consists of the following six parts: 1) prepro-
cessing to remove noisy images, 2) feature representation by ex-
tracting global and local features, 3) clustering the images into
R categories utilizing global features, 4) obtaining GPS location
refined centroids (i.e., each centroid corresponds to an identical
GPS location) for each first layer cluster, 5) selecting represen-
tative images for each refined centroid, and 6) building inverted
files for the representative images in each refined centroid based

on the BoW of the SIFT descriptor. The detailed steps of the of-
fline system are presented in Section IV.
The online system estimates the GPS location of an input

image. It carries out the following four steps after global and
local feature extraction: 1) first layer cluster selection, 2) second
layer centroid selection, 3) local feature refinement, and 4) GPS
location estimation and verification. In the first step, the input
image is assigned to one or more of a number of clusters. Im-
ages in the same cluster are visually similar. In the second step,
the input image is classified into a number of GPS location re-
fined centroids. In the third step, the local feature refinement
can also help improve the accuracy of GPS location estimation.
Also, as the local refinement is confined to a much smaller scale
compared to the whole dataset, it is very time efficient. What is
more, the local refinement can help determine whether the input
image’s location is contained offline or not, which makes our
system more robust. The detailed steps of the online system are
presented in Section V.

IV. THE OFFLINE SYSTEM

A. Preprocessing for the Dataset

Some of the crawled geo-tagged images are too bright or too
dark (such as several shining stars in a black sky) or too smooth
(such as a pure blue sky). These kinds of images have little to
contribute to online image GPS location estimation. So, we re-
move these images from the crawled dataset by checking their
average luminance and texture energy. If the image has a high
enough or low enough average energy, or has very low texture
energy, then it is viewed as noise and removed from the dataset.
The texture energy is measured here by the HWVP feature here.
For the 170-D feature, we built a matrix of , where N is
the number of images and M is the number of texture feature
dimensions. For each dimension, we computed the maximum
value in the matrix denoted as Maxi . For the 170D fea-
tures of each image, each value was divided by its corresponding
dimension’s maximum value. By doing so, the feature was nor-
malized. Then, the texture energy was calculated by adding all
values in the image’s features together.We observed that texture
of images of low quality was either too high or too low. Instead
of giving a hard numeric value for filtering, we deleted alpha%
images with too high/low texture energy, respectively, to filter
the noisy images. We found this was effective for filtering noisy
images when alpha chosen as 1.

B. Feature Representation

In contrast to IM2GPS [2], in this paper, global and local fea-
tures are utilized to improve the estimation performance and re-
duce computational costs. Here, color moment (CM) [3] and hi-
erarchical wavelet packet descriptor (HWVP) [4], [38] are used
as the global features and SIFT as the local features [5].
1) 45-D Color Moment (CM): Color features have been

proven to be the most GPS-informed features [2]. Thus, we
use the color feature as the global feature representation of the
images in our approach. An image is divided into four equal
blocks and a centralized image of equal size. For each block, a
9-D color moment is computed, and thus the dimension of the



LI et al.: GPS ESTIMATION FOR PLACES OF INTEREST FROM SOCIAL USERS’ UPLOADED PHOTOS 2061

color comment for each image is 45. The 9-D color moment
of an image segment is utilized, which contains the mean,
standard deviation, and skewness of each channel in the HSV
color space. The mean , standard deviation and skewness
of the -th channel are expressed as follows:

(1)

(2)

(3)

where is the value of the pixel located at in the
-th channel of a color image.
2) 170-D Hierarchical Wavelet Packet Descriptor (HWVP):

Texture feature, also a global description of an image, has
been proven to work well for scene categorization and image
recognition [3]. We use a hierarchical wavelet packet descriptor
(HWVP) [4], [38], a kind of texture feature representation
approach, as another global feature in our approach. A 170-D
HWVP descriptor is utilized by setting the decomposition level
to three and the wavelet packet basis to DB2.
3) Scale Invariant Feature Transform (SIFT): The images

could be further described via the local interest point descrip-
tors given by SIFT [5]. The SIFT-based local feature matching
is used for assuring: 1) whether or not the input image was taken
from an offline GPS location, and 2) which place the input image
was taken. In this paper, SIFT feature matching is utilized in
both the offline system for representative images selection for
each GPS location refined centroid and the online system to de-
termine the matched representative images.

C. Global Feature Clustering

In this paper, we propose clustering the image dataset and
using the centroids in the online system instead of the whole
image set. Through image clustering, the whole dataset can be
divided into sequential small-scale groups according to the ap-
pearance of the images. Our main purpose in clustering is to
reduce the computational cost and improve the GPS location
estimation performance.
K-means clustering has been proven to be a good method for

dividing a dataset into small clusters[19]. In this paper, we use
it to cluster the global features. To support fast, online GPS es-
timation, the number of first layer clusters in k-means should
not be set too large. In this paper, is set according to the dif-
ferent appearances (in color and texture) of images in four sea-
sons, daytime and night, landmark and landscape, modern and
ancient. Thus we set . The impact of to image GPS
estimation performances and computational costs is discussed
in Section VI-D.
The global feature clustering is carried out on the combined

215-D low-level feature including 45-D color moment and
170-D hierarchical wavelet packet. The global features of all
the images in the offline dataset are grouped into centroids

using K-means. After the global feature clustering, we get
centroids . Each centroid is

featured by a 215-D global feature vector .

D. GPS Location Based Cluster Refinement

After obtaining the set of centroids , we then par-
tition the set of geo-tagged images into these clusters. As-
suming that the number of the GPS locations in is

, we then separate the cluster referring to the GPS loca-
tions within each of these clusters, yielding a further partitioning
of the images into clusters .
For each of these finer clusters, we compute a global feature
vector by averaging the global features of the images be-
longing to the cluster:

(4)

where is the image number in , and is the 215-D
global feature vector of the -th image of . Thus the image
number in the cluster is the total number of images in each
GPS location refined centroids, i.e.,

(5)

Therefore, the total image number of the geo-tagged image
set is the sum of image numbers in the first layer clusters, i.e.,

(6)

E. Representative Images Selection for the GPS Location
Refined Centroids

The advantage of hierarchical global feature clustering is a
low computational cost. In the hierarchical global feature clus-
tering stage, we group images into coarse clusters and refine
them into GPS locations refined centroid .
Ideally, the images in the same GPS refined centroid have

similar visual content, but actually there are some outliers with
incorrect GPS information.Moreover some of the centroidsmay
contain too many images, especially for famous places such
as the Eiffel Tower and the leaning tower of Pisa. Thus, se-
lecting representative images for each GPS location, the refined
centroid is helpful for reducing computational costs of on-
line GPS estimation and protecting our approach from the in-
fluence of images with faulty GPS information. The impact of
using representative images or all the images on image GPS es-
timation performance and computational costs is discussed in
Section VI-D.
In representative image selection, both the relevance of the

image to the GPS location and the diversity among representa-
tive images are taken into account. The relevance of an image
to the GPS location refined centroid is determined by counting
the number of matched images from the same cluster. Thus,
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we utilize a local feature matching based approach to deter-
mine the representative images for each GPS location refined
centroid . Only when two images have sufficient matched
SIFT point pairs are they considered a match [7], [36]. The
diversity is achieved by selecting images representing various
viewpoints. The representative images for each
GPS location refined centroid are determined iteratively, as
shown in Algorithm 1.

Algorithm 1 Selecting Representative Images For the GPS
Location Refined Cluster

Input:

All the images in denoted set

Initial:

Pair-wise match between every pair of images in ;

Determine the number of images matching each image in
by counting the number of matching SIFT features.

Remove images without matched image from ;

the image with most matched images in ;

Update:

while is not null

the image with most matched images in ;

Number of SIFT features in ;

for

Count the number of matched SIFT point
between image and image ;

end

if

then image can be viewed as near duplicate with
image

update:

otherwise image is assigned as a representative image
for the centroid,

update:

end

Output: representative images for the GPS
location refined centroid

F. Bow for Representative Images

In this paper, an inverted file structure is proposed for man-
agement of the offline dataset, as shown in Fig. 1. First, we
randomly sample the SIFT feature points from an image set of
about 30 million images, and group the SIFT points into cen-
troids (i.e., the BoW number is ) using a hierarchical K-means

Fig. 2. Inverted file structure for the offline image set. Ci is the i-th first cluster
and ci,j denotes the j-th GPS location refined cluster from Ci. In the IFS, Fre-
quenx is the frequency of BoW #x in whole image set. Image #L is the L-th
image in the image dataset. The whole number of BoW in image #L is Num-
berL and the frequency of BoW #x in image #L is .

based approach. Then for the offline dataset, each SIFT point is
quantized into one of the centroids.
After selecting representative images for each GPS location

refined centroid, two approaches are proposed to express the
GPS location refined centroid . One approach is the normal-
ized histogram (NH) of the BoW of the representative images
[35] as follows:

(7)

where is the BoW histogram of the -th representative
image of the refined centroid , and is the number of the
representative images of the refined centroid .
The other approach is to build an inverted file structure for all

the representative images in the offline dataset. The inverted file
is also a hierarchical structure as shown in Fig. 2. As for the BoW
# , the first layer cluster , the second cluster

and the image it belongs to are all recorded. In addition,
the frequency of the BoW in all the image datasets (denoted as

) and that in image (denoted as ) are also
recorded. Considering that different images contain a various
number of BoW, the number of BoW in image
is recorded as well. All this information is used in the online
system. The impact of on image GPS estimation performance
and computational costs is discussed in Section VI-D.

V. THE ONLINE SYSTEM

The online system estimates the GPS location of an input
image with the help of the offline system. The detailed GPS
estimation for an input image is shown in Fig. 1. First, we ex-
tract the global features and SIFT features for the input image,
and quantize the SIFT descriptors into BoW. Then, we carry
out GPS estimation using hierarchical clusters selection, local
feature matching, and candidate GPS ranking. The hierarchical
clusters selection consists of two steps: first layer cluster se-
lection and second layer cluster selection. Local features are
used to refine the results. If there is no image matched with the
input image (i.e., the best matched images also have very local
matching scores), then it is viewed as not taken at any places in
the training dataset.
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A. First Layer Cluster Selection

Let denote the 215-D global features of the input
image. The distance between the query image and feature
vector of the -th center is computed as follow:

(8)

where denotes the norm of X. By ranking the distances in
ascending order, we select several first layer cluster candidates.
In first layer candidate clusters selection, we aim to choose

clusters that have similar texture patterns and colors with the
input image. In this paper, the top ranked cen-
troids are selected. The reason why we choose clusters rather
than the most similar one is based on the fact that images with
the same GPS location may be scattered into different clusters
in the first layer, and the visual similarity cannot guarantee the
content is the same. Thus, by selecting clusters in the first
layer, it is more likely to find the accurate clusters in the second
layer. Let denote the selected candi-
dates, where is one of the selected can-
didates . The impact of on image GPS
estimation performance and computational cost is discussed in
Section VI-D.

B. Second Layer Clusters Selection

After selecting the first layer cluster candidates
, the input image can be further refined into

the second layer GPS location refined centroids. Each
has refined global centroids in

the second layer. Thus there are a total of
refined centroids for the second layer after selecting
coarse centroids in the first layer. Let (with

) denote the set of candidate cen-
troids in the second layer, from which more precise clusters
can be determined by the distances between the input image
(with its global feature ) and that of the second layer
centroids (with global feature vector ) as follows:

(9)

In the second layer refined clusters selection, we firstly rank
the distances in ascending order, and then select the top
of the centroids as candidate GPS for the input image. Thus, the
number of selected centroids in second layer is .
We denote the selected candidates as with

. The impact of V on image
GPS estimation performances and computational costs is dis-
cussed in Section VI-D.

C. Local Feature Refinement

The above-mentioned cluster candidate selection is made
mainly for the sake of speeding up the process, which does
not ensure estimation accuracy. Thus, local feature matching
is utilized to improve GPS location estimation performance.
As representative images for each second cluster have already
been selected in the offline system, we carry out local feature
matching for the input image with the representative images of
the selected candidates .

In this paper, two different ways are utilized in local feature
matching to measure the similarity of the input image and the
representative images. One is based on the BoWhistograms [35]
and the other is based on the inverted file structure of BoW ex-
tracted from the representative images in each refined centroid.
1) Bow Histogram Based Similarity Measurement: In the of-

fline system, the normalized BoW histograms of the represen-
tative images in each refined centroid are built. Assuming that
the BoW histogram of the input image is denoted as

then the similarity of the input image with the re-
fined centroids can be measured by using cosine similarity
(denoted as COS), mean absolute distance (denoted as MAD),
mean squared distance (denoted as MSD), and histogram inter-
section (denoted as HIST) as follows:

(10)

(11)

(12)

(13)

2) Inverted File Structure Based Similarity Measurement:
For each BoW that occurs in the input image, we use the ob-
tained inverted files to compute the matching scores of the BoW
to the images in the selected candidates .
The score is computed while considering the frequency and the
weight of BoW by utilizing the well-known Term Frequency-
Inverse Document Frequency (TF-IDF) technique. The score
of the representative image #L to the input image (denoted as

) is assigned as the sum of the scores of all the BoW.
The score of each image is computed as follows:

(14)

where is the frequency of BoW #x and is
the number of BoW in image #L. is the frequency of
BoW #x in the whole dataset. is the weight of BoW #x in the
input image.

(15)

where denotes the frequency of BoW #x and
is the number of BoW in the input image.

D. GPS Estimation and Verification

The score of each image is used rank the result and to esti-
mate the GPS location. In this paper, a K-NN based approach is
utilized in GPS estimation for the input image. From Fig. 1, it
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is very likely that images taken from a certain place can be dis-
tributed into different clusters due to the various appearances of
the images taken at different time and viewpoints. For example,
in the second layer, images of the Eiffel Tower are divided into
different clusters. So in the online system, K-NN is necessary
for improving the GPS location estimation performance. The
impact of K on GPS location estimation performance and com-
putational cost are discussed Section VI-D. This approach is
similar to that utilized in IM2GPS [2]. First, we use mean-shift
clustering for the GPS locations of the images of the selected top
ranked K representative images. Finally, we pick out the cluster
with the highest cardinality and assign its GPS coordinates to
the input image.
To make sure whether or not the estimated GPS of a given

input image is taken from the offline locations, we further match
the input image with the representative images of the GPS loca-
tion refined second layer centroid. If two images have sufficient
matched SIFT point pairs[7], [36], they are considered a match.
Otherwise they are not match. However, the feature matching is
comparatively computationally intensive.
Actually in the inverted file structure based approach, the

matching scores of the representative images to the input im-
ages are obtained as shown in (14). Thus, we can determine
whether the GPS of an input image is in the range of the of-
fline dataset or not from the matching scores. In this paper,
we first determine the maximum matching scores of the input
image to the representative images in the selected candidates

, denoted as MScore, and then compute the
average score for the selected candidates ,
denoted as AScore. If the input image has images taken at the
same place of interest in the offline dataset, the maximum score
should be relatively higher than the average score. On the other
hand, if the input image does not have images taken at the same
place in the training set, the scores will be low for all the repre-
sentative images in the selected candidates .
Thus the rate of MScore to AScore can be utilized as the stan-
dard to judge whether or not the GPS of the input image can be
estimated. In this paper, if the rate of MScore to AScore is lower
than 1.2, we conclude the GPS of the input image is out of the
offline system.

VI. EXPERIMENTS AND DISCUSSIONS

In order to test the performance of the proposed GPS location
estimation approach, we compare IM2GPS [2], a spatial coding
based approach (denoted as SC) [20], an SVM based landmark
classification method (denoted as LC)[26], and ours. We tested
on three datasets: COREL5000 [44], OxBuild5000 [22], and
GOLD [35]. Moreover, in order to show its effectiveness for
a large-scale dataset with more GPS locations, we also tested
our approach on GOLDEN, which we built. GOLDEN is a
large-scale geo-tagged image set with 5.2 M images from 1,447
places of interest all over the world. GOLDENwas also crawled
from Flickr. Cross validations between GOLD and GOLDEN
are also presented to show the robustness of the proposed ap-
proach. All the experiments were performed in a C environment
on a server with 2.0 GHz CPU and 24 GB memory.

A. Experimental Dataset

The categories of OxBuild5000 and COREL5000 serve as
GPS locations. Thus, the GPS numbers for OxBuild5000 and
COREL5000 are 14 and 50 respectively. 100 images were se-
lected randomly from the whole dataset as the test set, while the
remaining images served as the training set in the offline system
for the construction of the hierarchical structure.
GOLD contains more than 3.3 million images with their Geo-

tags. It was crawled from Flickr using its public API. 80 travel
spots were selected for testing, i.e., the number of GPS loca-
tions was 80. The test dataset for the 80 sites contained 52,046
images [35]. A more detailed description of GOLD is provided
in APPENDIX.
GOLDEN is a large-scale, geo-tagged image set with 5.2

M images from 1,447 places of interest all over the world.
GOLDEN was also crawled from Flickr. The selection of 1,447
places is referred to the list of places of interest all over the
world from WIKI.com. There is no content overlapping be-
tween GOLD and GOLDEN. That is to say, the GPS locations
in GOLD do not appear in GOLDEN, and vice is versa.

B. Performance Evaluation

The performance evaluation contains two parts. The first part
is to test the cross validation performances that utilize images
taken outside the GPS locations in offline systems as input. The
second part is to test the average recognition rate of test images
taken from the GPS locations in offline systems.
1) Error Recognition Rate: We use error recognition rate

(ER) to evaluate the cross validation performances. For an
image not taken in any of the places in the offline dataset, if
it is determined to be one of the GPS locations in the offline
systems (i.e., the matching scores of the input image with the
representative images are large enough), then we judge the
GPS estimation is wrong. The ER is expressed as follows:

(16)

where is the number of test images selected for cross val-
idation and is the number of images wrongly estimated as
GPS locations taken from the offline system.
2) Average Recognition Rate: As for the test images taken

from places in the offline systems, if the selected image group
is actually the same group from which the test image is from, it
is correctly estimated. Otherwise, it is falsely estimated. We use
average recognition rate (AR) to evaluate the GPS estimation
performance, which is given as follows:

(17)

where is the correct recognition rate of the -th spot

(18)

where is the correct estimated image number, and is
the test image number. is the total number of GPS locations.
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TABLE I
AVERAGE RECOGNITION RATES (%) OF SC(1-NN) AND SC(K-NN), IM2GPS, LC AND OUR APPROACH

COS, MAD, MSD, HIST AND IFS ON COREL5000, OXBUILD5000 AND GOLD

TABLE II
AVERAGE COMPUTATIONAL COSTS (IN MS) OF SC(1-NN) AND SC(K-NN), IM2GPS, AND OUR APPROACH

COS, MAD, MSD, HIST AND IFS ON COREL5000, OXBUILD5000 AND GOLD

C. GPS Estimation Performance Comparisons

For a fair comparison, only visual features of the input
image are utilized. As for SC [20], both 1-NN and K-NN are
applied in the comparisons, which are denoted by SC(1-NN)
and SC(K-NN), respectively. In SC(K-NN), is set to be
120 under which best performance is achieved in our experi-
ments. As for IM2GPS, we use the best parameters provided
in the paper [2]. As for LC[26], the size of BoW is set at
60K. The performance of our approach under the similarity
measurement methods COS, MAD, MSD, HIST, and IFS are
evaluated. The parameters in our baseline algorithm are set at

, and the size of BoW
is set at 60K. The GPS estimation performance of SC(1-NN),
SC(K-NN), IM2GPS, LC, COS, MAD, MSD, HIST and IFS
are shown in Table I. The corresponding computational costs
are shown in Table II.
The results show that our method can achieve a significantly

better performance than the other methods, not only in GOLD
but also in both OxBuild5000 and COREL5000. The average
precisions of IM2GPS on the three-test dataset are 45.98%,
39.67%, and 53.06%. The average precisions of LC are
49.43%, 53.94%, and 54.25%, respectively. The performances
of SC (K-NN) in the three test dataset are 76.01%, 60.87%,
and 71.84%, which achieves performance improvements over
their corresponding SC(1-NN). The results for our method
under COS for the three datasets are 97%, 91%, and 84.64%,
respectively. Our approach under MAD, MSD, HIST, and IFS
performs better than IM2GPS, LC, and SC.
We have found that both global and local features are bene-

ficial in image GPS estimation. Because IM2GPS utilizes only
global features, its AR is comparatively low. Although SC uti-
lizes local features, it neglects the clues that global features can
provide. Thus, our method can achieve a better performance.
There are two reasons for the relatively low recognition rates
for LC. One is that spatial information is somewhat neglected in
their using of the BoW histogram. The other is that SVM clas-
sifiers are affected by the outliers (images with incorrect GPS
information) in training.
The average computational costs of IM2GPS on the three test

sets are 60.46micro-second (ms), 33.74ms, and 64927ms, while
that of SC (K-NN) are 7.30ms, 5.51ms, and 39.60ms on the

Fig. 3. Impact of first layer cluster number R to GPS estimation performance.

three test sets respectively. The LC is also time efficient with its
computational costs 1.04ms, 1.34ms, and 2.89ms, respectively.
The computational costs of COS, MAD, MSD, HIST, and IFS
are all lower than SC, LC, and IM2GPS. For the large-scale
dataset, our approach under IFS is very efficient and the average
computational cost is 0.117ms, which is only about
of IM2GPS, 0.25% of SC(K-NN), 12.19% of COS, 12.58% of
MAD, 11.36% of MSD, and 11.82% of HIST.

D. Discussions

The performance of our approach is related to five param-
eters: the number of first layer clusters , the number of first
layer candidates , the percentage of the selected second layer
cluster candidates in K-NN, and the size of the SIFTS de-
scriptor codebook. The parameters in our baseline algorithm are
set at , and the size of
BoW is set at 60K. We will next examine their respective im-
pacts by carrying out a set of experiments on GOLD. Finally,
the impact of using representative images and all the images for
each refined centroid to the GPS estimation performances is also
provided.
1) Impact of Total Number of the First Layer Clusters R:

To study the impact of the total number of the first layer,
we carry out experiments under different by fixing

, and . The corresponding Average
Recognition rates of COS, MAD, MSD, HIST, and IFS with

are shown in Fig. 3, and
their computational costs are shown in Table III respectively.
In Fig. 3, means that no global clustering is utilized.
As increases, the performance first increases and then drops.
When is in the range of , a better performance
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TABLE III
AVERAGE COMPUTATIONAL COSTS (MS) UNDER DIFFERENT R

Fig. 4. Impact of first layer candidate M to GPS estimation performances.
(a) AR values of COS, MAD, MSD, HIST and IFS, (b) the computational costs
(ms) under various M.

can be achieved. As shown in Table III, as increases, the
computational costs of COS, MAD, MSD, HIST increase dra-
matically, while the computational costs of IFS are all less than
0.20 ms.
2) Impact of Number of First Layer Candidate : Fig. 4(a)

shows the AR values with the increase of ), when
, and . Fig. 4(b) shows the computa-

tional costs with the increase of . It is clear that with the in-
crease of , the computational costs increase lineally for COS,
MAD, MSD, and HIST. However, the computational costs of
IFS do not change very much with the increase of . IFS is
very efficient compared to COS, MAD, MSD, and HIST.
3) Impact of Percentage of Second Layer Candidate V: The

impact of the percentage of second layer candidate onGPS es-
timation performance is tested under the condition that ,

, and . The AR values and the corresponding
computational costs (ms) are shown in Figs. 5(a) and 5(b) re-
spectively. When
, and , the corresponding AR values are 80.85%,

81.78%, 82.55%, 82.63%, 82.97%, and 84.81%, respectively,
for COS, and 80.07%, 80.56%, 81.43%, 82.35%, 82.59%, and
83.97% for IFS. The performances of COS, MAD, MSD, and
HIST are a little better than IFS. The computational costs in-
crease with the increase of for COS, MAD, MSD, and HIST.
The computational costs of IFS are much more stable and far
less than those of COS, MAD, MSD, and HIST.
4) Impact of K in K-NN: Next, we discuss the impact of

K, which is the parameter of the last step of GPS estimation

Fig. 5. The impact of the percentage of second layer candidate V to GPS es-
timation performances. (a) AR values of COS, MAD, MSD, HIST and IFS,
(b) computational costs.

Fig. 6. Impact of K in K-NN to GPS estimation performance.

when , and . The corresponding
AR values of COS, MAD, MSD, HIST, and IFS when

are shown in Fig. 6. When
and , the corresponding AR

values are 81.91%, 83.68%, 83.91%, 84.64%, and 84.97% for
COS, and 81.53%, 82.88%, 83.31%, 83.94%, and 84.27% for
IFS. The results show that the AR for all the methods improves
with the increase of K. As is used in the last step for image
GPS estimation, the computational costs under various K are
almost the same.
5) Impact of BoW Size Q: In the above sections, experiments

were conducted on the condition that the BoW size was set at
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TABLE IV
AR (%) OF OUR APPROACHES UNDER DIFFERENT SIZES OF BOW (Q)

Fig. 7. Impact of using representative images vs. all images on COREL5000,
OxBuild5000 and GOLD. (a) AR values of COS(R), COS(ALL), IFS(R), and
IFS(ALL). (b) Computational costs.

60K. Here, the impact of BoW size on the GPS location esti-
mation is discussed by setting it to 6K, 30K, 60K, and 300K
when , , , and . The re-
sults are shown in Table IV. It can be observed that usually, the
larger the BoW size, the better the performance of GPS location
estimation.
6) Impact of Using Representative Images or All Images: In

the offline system, representative images are selected for every
GPS location refined centroid. The aim of selecting represen-
tative images is to reduce the influence of noise geo-tagged
images on GPS estimation performance and computational
cost. Here, comparison between using representative images
and using all images in each refined centroids is discussed. Let
COS(R) and COS(ALL) denote our approach COS by using
representative images and all images for input image GPS
location estimation. And let IFS(R) and IFS(ALL) denote IFS
utilizing representative images and all images, respectively.

TABLE V
AR (%) OF IFS ON GOLDEN WITH DIFFERENT R AND M

TABLE VI
AVERAGE COMPUTATIONAL COSTS (MS) OF IFS ON GOLDEN

WITH DIFFERENT R AND M

The corresponding AR values and their computational costs are
shown in Figs. 7(a) and 7(b), respectively. From Fig. 7(a), we
can see that the performances when using representative images
are better than those using all images on all three test datasets
COREL5000, OxBuild5000, and GOLD. The computational
cost of COS is not affected by using a representative image
at all, because the average BoW histograms of all images and
representative images have the same dimension. IFS can save a
lot time using representative images instead of using all images.
The computational cost of IFS using representative images is
about a quarter of that using all images.

E. Subjective GPS Estimation Result

In order to show the subjective GPS estimation result, 21 im-
ages randomly selected from the 80 spots are assigned to the es-
timated GPS location as shown in Fig. 8. We mark the estimated
GPS locations of the photos with solid lines. We use the green
lines to show the correct estimation and the red lines to show in-
correct estimation (their correct GPS locations are shown by the
dashed green lines). It can be observed that our method works
well for landmarks. On the other hand, for some landscapes, the
performance is not satisfactory because the representative im-
ages have changing backgrounds depending upon the time. For
example, the test images Cape of Good Hope andMount Fuji,
which are marked by red frames, are not correctly estimated.
The photo ofMount Fuji is crowded with flowers and grasses.
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Fig. 8. Subjective results of GPS estimation performances for some test samples. Red line indicates wrong estimation while green solid line denotes right estima-
tion and green dash line denotes the accurate location. The images with red frames are the wrong estimations.

There are too many SIFT points in the background, and only a
few on themountain, so local feature refinement cannot improve
the GPS estimation performance.

F. Performance Evaluation on GOLDEN

To test the scalability of our method IFS, an experiment on
the GOLDEN dataset is provided. The experiment was imple-
mented on GOLDEN with a different and when

and . The AR values and computational costs
of IFS are given in Tables V and VI, respectively. It is clear that
our method also achieved a good performance on the extended
test dataset. The AR was 81.03% and the computational cost
was 1.24 ms when and . When and

, the AR is 79.85% and the computational cost is only
0.48 ms. When , and , the performance decrease
was about 3.5%, and the computational cost increased by about
three times. Thus, it is reasonable to set in global fea-
ture clustering. The experiment showed that even for a dataset
with more GPS locations, IFS has a satisfactory performance
and acceptable computational cost.

G. Cross Validation Between GOLD and GOLDEN

In order to show the effectiveness of the proposed approach
in image GPS estimation, cross validations between GOLD and
GOLDEN were carried out to accomplish the task of recog-
nizing images taken outside of the GPS location in the offline
system. The performances when using GOLD as the training
set and images in GOLDEN as the test set are presented in
Table VII. We randomly selected 1000, 2000, 3000, 5000, and
10000 images from GOLDEN as input images, the results of in-
correctly judged image numbers are 72, 145, 204, 336, and 671,
respectively. Correspondingly, the performance when using

Fig. 9. Crawled image distributions and the selected 80 travel spots. (a) the
image distribution in the world scale, (b) the distribution of the 80 travel spots.
In Fig. 9(a), purple indicates the places contain more than 5000 images, and
light gray means the number of the images ranges from 3000 to 5000, red from
2000 to 3000, green from 1000 to 2000, orange 500 to 1000 and yellow is from
100 to 500.

GOLDEN as the training set and images in GOLD as the test
set are presented in Table VIII. In the cross validation, when
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TABLE VII
ERROR RATES (%) OF IFS USING GOLD AS TRAINING SET AND RANDOMLY SELECTED IMAGES FROM GOLDEN AS TEST SET

TABLE VIII
ERROR RATES (%) OF IFS USING GOLDEN AS TRAINING SET AND RANDOMLY SELECTED IMAGES FROM GOLD AS TEST SET

TABLE IX
INDEX OF 80 TRAVEL SITES

we use randomly selected 1000, 2000, 3000, 5000, and 10000
images from GOLD as input images, the resulting error rates
are 8.4%, 8.6%, 8.03%, 7.64%, and 7.51%, respectively. This
shows that our method can accomplish the task of recognizing
images taken out of offline locations.

VII. CONCLUSIONS

In this paper, we propose a system of hierarchical structure
to estimate the GPS location for an image. Both GPS estima-
tion performances and computational costs are beneficial from
the hierarchal structure and inverted file structure. The hier-
archical global feature clustering divides the large-scale geo-
tagged dataset into a set of small-scale clusters. The heavy com-
puting costs of local featurematching is reduced dramatically by
confining local feature match to several small-scale GPS loca-
tion refined clusters. Utilizing representative images rather than

all the images of each GPS location helps further save compu-
tational costs and improve the GPS estimation accuracy. The
inverted file structure has also proved to be efficient in GPS esti-
mation, especially for a large-scale image dataset. Our approach
works well for estimating GPS locations for landmarks. How-
ever, it is very challenging to estimate image GPS for photos
taken from places of interest with a changing background. In
the future, we will pay more attention to this.

APPENDIX

The crawled data set GOLD are from Flickr, the images with
tags such as ‘birthday’, ‘party’, ‘meeting’ and so on which have
little to do with location are deleted automatically. After the
preprocessing, we get an image dataset with GPS information
containing 3.3 million (3M) images.
Then GPS distribution of the images in GOLD is as shown in

Fig. 9(a). The 3.3M images are distributed in 652912 different
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places. And different image number is annotated in different
color. In Fig. 9(a), purple indicates the places contain more than
5000 images, and light gray means the number of the images
ranges from 3000 to 5000, red from 2000 to 3000, green from
100 to 2000, orange 500 to 1000 and yellow is from 100 to
500. Finally, 80 travel spots are selected by considering both the
image number and the user number of who upload the images of
each location. Table IX shows the name of the 80 travel spots.
Fig. 9(b) shows the locations of the 80 spot in map.

REFERENCES
[1] M. A. Stricker and M. Orengo, “Similarity of color images,” in Proc.

IS&T/SPIE’s Symp. Electron. Imaging: Sci. & Technol., 1995, pp.
381–392.

[2] J. Hays and A. A. Efros, “IM2GPS: Estimating geographic information
from a single image,” in Proc. IEEE Conf. Comput. Vision and Pattern
Recognition, 2008, pp. 1–8.

[3] B. S. Manjunath and W. Ma, “Texture features for browsing and re-
trieval of image data,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
18, pp. 837–842, 1996.

[4] X. Qian, G. Liu, D. Guo, Z. Li, Z. Wang, and H. Wang, “Object cat-
egorization using hierarchical wavelet packet texture descriptors,” in
Proc. 11th IEEE Int. Symp. Multimedia, 2009, pp. 44–51.

[5] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vision, vol. 60, pp. 91–110, 2004.

[6] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, pp.
1615–1630, 2005.

[7] L. S. Kennedy andM. Naaman, “Generating diverse and representative
image search results for landmarks,” in Proc. 17th Int. Conf. World
Wide Web, 2008, pp. 297–306.

[8] W. B. Thompson, C. M. Valiquette, B. H. Bennet, and K. T. Suther-
land, “Geometric reasoning for map-based localization,” in Comput.
Sci. Tech. Rep. UUCS-96–006. Salt Lake City, UT, USA: Univ. Utah,
1996.

[9] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring
photo collections in 3D,” in Proc. ACM Trans. Graph. (TOG), 2006,
pp. 835–846.

[10] I. Simon, N. Snavely, and S.M. Seitz, “Scene summarization for online
image collections,” inProc. IEEE 11th Int. Conf. Comput. Vision, 2007,
pp. 1–8.

[11] T. Quack, B. Leibe, and L. Van Gool, “World-scale mining of objects
and events from community photo collections,” inProc. Int. Conf. Con-
tent-Based Image and Video Retrieval, 2008, pp. 47–56.

[12] A. Popescu and P. Moëllic, “MonuAnno: automatic annotation of geo-
referenced landmarks images,” in Proc. ACM Int. Conf. Image and
Video Retrieval, 2009, p. 11.

[13] J. Kleban, E. Moxley, J. Xu, and B. S. Manjunath, “Global annotation
on georeferenced photographs,” in Proc ACM Int. Conf. Image and
Video Retrieval, 2009, p. 12.

[14] K. Yang, M. Wang, X. Hua, and H. Zhang, “Social image search with
diverse relevance ranking,” in Proc. Advances in Multimedia Mod-
eling, 2010, pp. 174–184.

[15] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-based mul-
timedia information retrieval: State of the art and challenges,” ACM
Trans. Multimedia Comput., Commun., Applicat. (TOMCCAP), vol. 2,
pp. 1–19, 2006.

[16] T. Quack, U. Mönich, L. Thiele, and B. S. Manjunath, “Cortina: A
system for large-scale, content-based web image retrieval,” in Proc.
12th Annu. ACM Int. Conf. Multimedia, 2004, pp. 508–511.

[17] Y. Rui, T. S. Huang, and S. Mehrotra, “Content-based image retrieval
with relevance feedback inmars,” inProc. Int. Conf. Image Processing,
1997, pp. 815–818.

[18] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clus-
tering algorithm,” J. Roy. Statist. Soc. Series C (Appl. Statist.), vol. 28,
pp. 100–108, 1979.

[19] W. Zhou, Y. Lu, H. Li, Y. Song, and Q. Tian, “Spatial coding for large
scale partial-duplicate web image search,” in Proc. Int. Conf. Multi-
media, 2010, pp. 511–520.

[20] S. Zhang, Q. Huang, G. Hua, S. Jiang, W. Gao, and Q. Tian, “Building
contextual visual vocabulary for large-scale image applications,” in
Proc. Int. Conf. Multimedia, 2010, pp. 501–510.

[21] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach
to object matching in videos,” in Proc. 9th IEEE Int. Conf. Comput.
Vision, 2003, pp. 1470–1477.

[22] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Ob-
ject retrieval with large vocabularies and fast spatial matching,” in
Proc. IEEE Conf. Comput. Vision and Pattern Recognition, 2007,
pp. 1–8.

[23] C. Wu, F. Fraundorfer, J. Frahm, and M. Pollefeys, “3D model search
and pose estimation from single images using VIP features,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recognition
Workshops, 2008, pp. 1–8.

[24] G. Baatz, K. Köser, D. Chen, R. Grzeszczuk, andM. Pollefeys, “Lever-
aging 3d city models for rotation invariant place-of-interest recogni-
tion,” Int. J. Comput. vision, vol. 96, pp. 315–334, 2012.

[25] M. Park, J. Luo, R. T. Collins, and Y. Liu, “Beyond GPS: Determining
the camera viewing direction of a geotagged image,” in Proc. Int. Conf.
Multimedia, 2010, pp. 631–634.

[26] Y. Li, D. J. Crandall, and D. P. Huttenlocher, “Landmark classifica-
tion in large-scale image collections,” in Proc. IEEE 12th Int. Conf.
Comput. Vision, 2009, pp. 1957–1964.

[27] D. J. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg, “Map-
ping the world’s photos,” in Proc. 18th Int. Conf. World Wide Web,
2009, pp. 761–770.

[28] E. Kalogerakis, O. Vesselova, J. Hays, A. A. Efros, and A. Hertzmann,
“Image sequence geolocation with human travel priors,” in Proc. IEEE
12th Int. Conf. Comput. Vision, 2009, pp. 253–260.

[29] Y. Zheng et al., “Tour the world: Building a web-scale landmark recog-
nition engine,” in Proc. IEEEConf. Comput. Vision and Pattern Recog-
nition, 2009, pp. 1085–1092.

[30] R. Ji, Y. Gao, B. Zhong, H. Yao, and Q. Tian, “Mining Flickr
landmarks by modeling reconstruction sparsity,” ACM Trans.
Multimedia Comput. Commun., Applicat. (TOMCCAP), vol. 7,
pp. 31–31, 2011.

[31] R. Ji, X. Xie, H. Yao, and W. Ma, “Mining city landmarks from blogs
by graph modeling,” in Proc. 17th ACM Int. Conf. Multimedia, 2009,
pp. 105–114.

[32] R. Adam and P. Kelm, “Working notes for the placing task at medi-
aeval,” 2012.

[33] M. Trevisiol, J. Delhumeau, H. Jégou, and G. Gravier, “How INRIA/
IRISA identifies geographic location of a video,” in Proc. MediaEval
2012 Workshop Working Notes, 2012.

[34] O. Van Laere, S. Schockaert, and B. Dhoedt, “Ghent University at
the 2011 placing task,” in Proc. MediaEval Workshop Working Notes,
2011.

[35] J. Li, X. Qian, Y. Y. Tang, L. Yang, and C. Liu, “GPS estimation from
users’ photos,” Adv. Multimedia Model., pp. 118–129, 2013.

[36] Y. Xue and X. Qian, “Visual summarization of landmarks via view-
point modeling,” in Proc. 19th IEEE Int. Conf. Image Processing
(ICIP), 2012, pp. 2873–2876.

[37] X. Qian, X. Liu, C. Zheng, Y. Du, and X. Hou, “Tagging photos using
users’ vocabularies,” Neurocomputing, 2013.

[38] X. Qian, D. Guo, X. Hou, Z. Li, H. Wang, and G. Liu, “HWVP: Hi-
erarchical wavelet packet descriptors and their applications in scene
categorization and semantic concept retrieval,” Multimedia Tools Ap-
plicat., pp. 1–24, 2012.

[39] O. Van Laere, S. Schockaert, and B. Dhoedt, “Ghent University at the
2010 placing task,” in Proc. MediaEval 2010 Workshop, 2010.

[40] L. Tzy Li, J. Almeida, D. Carlos Guimaraães Petronette, O. A. B.
Penatti, and R. da. S. Torres, “A multimodal approach for video
geocoding at mediaeval 2012,” in Proc. MediaEval 2012 Workshop,
2012.

[41] P. Kelm, S. Schmiedeke, and T. Sikora, “Video2GPS: Geotagging
using collaborative systems, textual and visual features,” in Proc.
MediaEval 2010 Workshop, 2010.

[42] X. Li, C. Hauff, M. Larson, and A. Hanjalic, “Preliminary exploration
of the use of geographical information for content-based geo-tagging
of social video,” in Proc. MediaEval 2012 Workshop, 2012.

[43] P. Kelm, S. Schmiedeke, and T. Sikora, “How spatial segmentation im-
proves the multimodal geo-tagging,” in Proc. MediaEval 2012 Work-
shop, 2012.

[44] G. Liu, Z. Li, L. Zhang, and Y. Xu, “Image retrieval based on micro-
structure descriptor,” Pattern Recognit., vol. 44, p. 2123, 2011.

[45] H. Liu, T. Mei, J. Luo, Li Houqiang, and Li Shipeng, “Finding
perfect rendezvous on the go: Accurate mobile visual localization
and its applications to routing,” in Proc. ACM Multimedia, 2012,
pp. 9–18.



LI et al.: GPS ESTIMATION FOR PLACES OF INTEREST FROM SOCIAL USERS’ UPLOADED PHOTOS 2071

Jing Li received the B.A. degree fromXi’an Jiaotong
University in 2010, and now is a Master student in
SMILES lab, Xi’an Jiaotong University.
Her research interests include computer vision,

large scale image retrieval and recognition and
data mining and knowledge discovery from social
multimedia.

Xueming Qian (M’10) received the B.S. and M.S.
degrees in Xi’an University of Technology, Xi’an,
China, in 1999 and 2004, respectively, and the Ph.D.
degree in the School of Electronics and Information
Engineering, Xi’an Jiaotong University, Xi’an,
China, in 2008. He was awarded Microsoft fellow-
ship in 2006. From 1999 to 2001, he was an Assistant
Engineer at Shannxi Daily. From 2008 until now, he
is a faculty member of the School of Electronics and
Information Engineering, Xi’an Jiaotong University.
Now he is an associate professor of the School of

Electronics and Information Engineering, Xi’an Jiaotong University. He is the
director of SMILES LAB. He was a visiting scholar at Microsoft Research Asia
from Aug. 2010 to March 2011. His research interests include video/image
analysis, indexing, and retrieval.

Yuan Yan Tang (F’04) is a Chair Professor in
Faculty of Science and Technology at University of
Macau and Professor/Adjunct Professor/Honorary
Professor at several institutes including Chongqing
University in China, Concordia University in
Canada, and Hong Kong Baptist University in
Hong Kong. His current interests include wavelets,
pattern recognition, image processing, artificial
intelligence. He has published more than 400 aca-
demic papers and is the author/coauthor of over 25
monographs/books/book chapters. He is the Founder

and Editor-in-Chief of International Journal on Wavelets, Multiresolution,
and Information Processing (IJWMIP), and Associate Editors of several
international journals. He is the Founder and Chair of pattern recognition
committee in IEEE SMC. He has serviced as general chair, program chair,
and committee member for many international conferences. Dr. Tang is the
Founder and General Chair of the series International Conferences on Wavelets
Analysis and Pattern Recognition (ICWAPRs). He is the Founder and Chair of
the Macau Branch of International Associate of Pattern Recognition (IAPR).
Dr. Y. Y. Tang is a Fellow of IEEE, and Fellow of IAPR.

Linjun Yang is a Researcher with Microsoft Research Asia, Beijing, China. He
received the MS degree in Fudan University, Shanghai, China, in 2006. His cur-
rent research interests include multimedia information retrieval and computer
vision.

Tao Mei (M’07–SM’11) is a Lead Researcher
with Microsoft Research Asia, Beijing, China. He
received the B.E. degree in automation and the Ph.D.
degree in pattern recognition and intelligent systems
from the University of Science and Technology of
China, Hefei, China, in 2001 and 2006, respectively.
His current research interests include multimedia
information retrieval and computer vision. He has
authored or co-authored over 150 papers in journals
and conferences, eight book chapters, and edited
three books. He holds eight U.S. granted patents and

more than 20 in pending.
Dr. Mei was the recipient of several paper awards from prestigious multi-

media conferences, including the Best Paper Awards at ACM Multimedia in
2007 and 2009, the Best Poster Paper Award at the IEEEMMSP in 2008, the Top
10% Paper Award at the IEEE MMSP in 2012, the Best Paper Award at ACM
ICIMCS in 2012, the Best Student Paper Award at the IEEE VCIP in 2012, and
the IEEE TRANSACTIONS ONMULTIMEDIA Prize Paper Award 2013. He received
Microsoft Gold Star Award in 2010, andMicrosoft Technology Transfer Awards
in 2010 and 2012. He is an Associate Editor of Neurocomputing and the Journal
of Multimedia, a Guest Editor of the IEEE TRANSACTIONS ONMULTIMEDIA, the
IEEE Multimedia Magazine, the ACM/Springer Multimedia Systems, and the
Journal of Visual Communication and Image Representation. He is the Program
Co-Chair of MMM 2013, and the General Co-Chair of ACM ICIMCS 2013. He
is a Senior Member of the IEEE and the ACM.


